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Abstract Twenty two oxygenated aromatic essential oil
compounds were chosen for the study of the antifungal
activity against two wood-decaying fungi, the white-rot
Trametes versicolor, which mainly metabolizes lignin,
and the brown-rot Coniophoha puteana, which digests
cellulose in plant cell walls. Minimal inhibitory concen-
trations (MICs) were determined by the agar dilution
method, using dimethyl sulfoxide (DMSO) as the solvent
for the selected compounds and potato-dextrose agar
(PDA) as the growth medium for both fungi. The MICs
were then used to generate a tree structure, which
represents the structuring of the essential oil compounds
by the nature and position of the substituents in their
aromatic rings, and as dependent variables (log(1/MIC))
in the QSAR analysis. Data structuring proved that a
relationship between the molecular structures of the
essential oil compounds and their antifungal activity
exists, and the hypotheses derived therefrom were com-
plemented by performing a QSAR analysis using the
partial least squares (PLS) method. Statistically signifi-
cant PLS models were obtained with the 1-octanol–water
partition coefficient (C log P), the energy of the highest
occupied molecular orbital (EHOMO), and the number of
hydrogen-bond donor atoms in the molecules of the
compounds studied (Donor) for T. versicolor and with
C log P and the fractional negative surface area (FNSA1)
for C. puteana.

Keywords QSAR · Oxygenated aromatic compounds ·
Essential oils · Antifungal activity · Wood-degrading
fungi

Introduction

Essential oils have a long history as traditional medicinal
agents. Phenols (thymol, carvacrol, eugenol) and other
oxygenated aromatic essential-oil compounds such as
phenol ethers (trans-anethole, methyl chavicol) and
aromatic aldehydes (cinnamaldehyde, cuminaldehyde)
have been reported to exert both antibacterial [1] and
antifungal activity, [2] and are thus constantly being
investigated for possibilities of application in food
preserving and as natural antimicrobial agents in human
and veterinary medicine [3, 4, 5, 6, 7, 8].

The white-rot Trametes versicolor and the brown-rot
Coniophora puteana, both members of the basidiomyce-
tes family, cause the degradation of lignin and cellulose in
wood. Besides other enzymes, T. versicolor produces
extracellular laccase, a blue multi-copper oxidoreductase,
which catalyzes the oxidation of phenolic species to
phenoxy radicals, which may further be prone to enzy-
matic oxidation reactions to form quinones, or to non-
enzymatic reactions such as hydration and polymerization
[9, 10, 11]. C. puteana on the other hand, produces
extracellular cellobiose dehydrogenase (CDH), which
plays an important role in the initial stages of brown-rot
wood decay by catalyzing the oxidation of cellodextrins,
mannodextrins, and lactose in hemicellulose to their
corresponding lactones. The oxidation reaction is coupled
with the reduction of a wide spectrum of electron
acceptors including quinones and phenoxy radicals [12,
13]. This phenomena occurs through the Fenton reac-
tion (Fe(II)-oxalate+H2O2!Fe(III)-oxalate+OH·+OH�),
which yields free hydroxyl radicals, which subsequently
form pores in the enveloping hemicellulose and thus
allow the diffusion of cellulases and their action upon
cellulose microfibrils in plant cell walls [14,15].

Many QSAR studies on the biological action of
phenols have been reported. Acute phenolic toxicity on
tadpoles was investigated by Wang and co-workers, [16]
on algae by Lu and co-workers, [17] and their cytotoxic
action on rat liver cells by Hansch and co-workers [18].
QSARs describing phenolic antioxidant properties, [19]
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skin irritant potentials [20] and antibacterial activity
towards oral bacteria [21, 22] have also been reported. A
common finding of most QSAR studies dealing with the
investigation of a biological activity of a set of com-
pounds in vivo is the descriptive importance of the
macroscopic hydrophobicity descriptor log P, which
represents the ability of a compound to penetrate the cell
membrane and reach the interacting sites [16, 23]. In
bioreactions, where binding to another atom and electron-
transfer reactions such as oxidation and reduction are
involved, E HOMO and E LUMO, as the quantum chemical
descriptors associated with the ionization potential and
electronic affinity of a molecule, have also proven to
yield good correlations [17, 24]. Geban and co-workers
[25] discovered that the electron density of the highest
occupied molecular orbital at the sulfur and oxygen atoms
of 3,4-disubstituted-1,2,4-oxa(thia)-diazole-5(4 H)-
ones(thiones) is strongly related to their antibacterial
and antifungal activity as these sites are the key sites for
binding to mercapto (–SH) groups in enzyme active sites,
which is the basis of their antimicrobial activity. Simi-
larly, the antifungal action of phenols is based on the
inhibition of fungal enzymes containing –SH groups in
their active sites [26] and the T. versicolor laccase is an
example of such an enzyme.

The application of essential oils or their chemical
constituents in wood preservation has not yet been
reported. The purpose of our study was to correlate the
experimentally determined antifungal activity of 22
essential oil phenols, phenol ethers, and aromatic alde-
hydes towards the white-rot T. versicolor and the brown-
rot C. puteana with structural features of the molecules of
the selected compounds and thus explore the possibilities
of application of essential oils as natural preservatives in
wood preservation formulations against these two wood-
decaying fungi. Since the target fungal enzymes of the
inhibitory action of phenolic compounds towards T.
versicolor and C. puteana have not yet been identified,
a further goal of the QSAR analysis was to gain more
information on the biomechanism of the selected com-
pounds’ inhibitory action in order to gain information on
the possible structure of the target enzymes’ active sites
and infer on their nature.

Structure–activity relationships were first investigated
by structuring data into a tree structure and the hypotheses
derived therefrom were complemented with the results
obtained by performing PLS-QSAR with hydrophobicity,
quantum chemical, structural, and geometrical molecular
descriptors.

Materials and methods

Chemicals

Phenol and hydroquinone were purchased from Riedel de
Haen, Germany, benzaldehyde and DMSO from Kemika
Zagreb, Croatia, and anisaldehyde from Merck, Germany.
Thymol was a courtesy of Krka Pharmaceuticals Novo

Mesto, Slovenia, and vanillin and ethyl vanillin were a
courtesy of Aero Celje, Chemical, Graphic and Paper
Industry, Slovenia. All the other chemicals were pur-
chased from Aldrich, Germany.

Antifungal activity assay

Minimal inhibitory concentrations (MICs) of 22 essential-
oil phenols, phenol ethers and aromatic aldehydes
(Table 1) for the brown-rot Trametes versicolor (ZIM
L053) and the white-rot Coniophora puteana (ZIM L010)
were determined with a screening test by the agar dilution
method. DMSO was used as the solvent for the selected
essential-oil compounds (nine concentrations between
2�10�2 mol l�1 and 7.8�10�5 mol l�1 were tested) and
potato-dextrose agar (PDA) as the growth medium for
both wood-degrading fungi [27, 28]. Fungi growing on
PDA alone and on PDA with an addition of DMSO
represented the controls and every experiment was
performed in triplicate. MICs of the compounds tested
were labeled as the concentrations, which, after 1 week of
incubation at 25 �C and 75% relative humidity in a
growth chamber, prevented any visible growth of the
fungi or any other visible changes, such as staining of the
growth medium, which would indicate a reaction of the
fungi towards the inhibitory compounds. In the cases of
hydroquinone, o-cresol, guaiacol, and coniferaldehyde,
MICs greater than 0.02 mol l�1 could not be determined
because the preparation of such high concentrations was
not possible.

Data structuring

Based on the experimentally determined MIC values, a
tree structure was constructed (Fig. 1) using methods for
structuring data into systems, [29] which represents the
structuring of the selected oxygenated aromatic essential
oil compounds by the nature and position of their
substituents in the aromatic ring. Structural formulae of
the compounds tested were arranged into a tree structure
in the following way: branching in the first level was
achieved by considering the nature of the substituent in
the first position of the aromatic ring R1, which was either
a hydroxyl, a methoxy, or an aldehyde group. If two of
these groups were present in the molecule, e.g. an –OH
and an –OMe group, the molecule was treated as a phenol
(R1=–OH), because literature references dealing with the
antifungal activity of phenols on the two chosen wood-
degrading fungi are quite large in number, while those
dealing with the antifungal activity of phenol ethers and
aromatic aldehydes on the two wood-degrading fungi
were not found. The resulting three subgroups were
subsequently structured according to the compounds’
substituents in the second position of the aromatic ring
(R2=–H, –Me, –i-Pr, –OMe, –OEt, –COOMe), followed
by the third (R3=–H, –Me, –i-Pr), fourth (R4=–H, –Me, –i-
Pr, cis- and trans-1-propenyl, 2-propenyl, –OH, –CHO,
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–CH=CH–CHO, 2-ketopropyl), fifth (R5=–H, –Me) and
sixth position of the aromatic ring (R6=–H, –Me). The
resulting branches of the tree structure were then linked to
the experimentally determined MICs and potential struc-
ture–activity patterns were sought. By identifying the
most active and least active compounds in the tree
structure, the substituent or substituents, which may be

the potential reason for a compound’s antifungal activity,
were searched for by moving from the right to the left side
of the tree structure and comparing the substituents in the
same positions of the aromatic ring.

Table 1 Selected essential oil
phenols, phenol ethers, and ar-
omatic aldehydes, tested for
their antifungal activity against
T. versicolor and C. puteana
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Calculation of molecular descriptors
and PLS-QSAR analysis

Two assumptions were made prior to the PLS-QSAR
analysis: (1) MICs of compounds that were experimen-
tally determined to be greater than 0.02 mol l�1 were
assumed to be 0.1 mol l�1 (log(1/MIC)=1) to enable the
inclusion of these compounds in the PLS analysis and (2)
the isomeric mixture of cis- and trans-isoeugenol was
treated as trans-isoeugenol because the 1-propenyl, 2-
propenyl, and 1-propenal chains in the fourth position of
the aromatic ring of structurally similar compounds in the
data set (eugenol, trans-anethole, methyl chavicol, methyl
eugenol, and coniferaldehyde) all have trans-conforma-
tions. C log P was calculated with the Tetko and co-
workers’ [30] Java-based software and molar refractivity
(CMR) was calculated with PCModels, [31] both avail-
able on the Internet. Calculations of all other molecular
descriptors and PLS-QSAR analyses were performed with
SYBYL 6.7.2 [32] on a Silicon Graphics Workstation
(IRIX 6.5 operating system). Full geometry optimization
of the molecular structures and calculations of EHOMO
and ELUMO were carried out with the AM1 Hamiltonian
using MOPAC 6.0, implemented in SYBYL. The result-
ing PLS regression equations were checked for validity by

the “leave-one-out” cross-validation method, while the
best PLS-QSAR models were additionally evaluated with
the PRESS (predictive residual sum of squares), PRESS/
SSy (SSy is the sum of squares of the dependent variable
Y�log(1/MIC) values) and s/DAct. (ratio of the standard
error of estimate and the experimentally determined
antifungal activity range) statistical parameters for the
evaluation of QSAR models.

Results

The results of the experimental determination of MICs for
the 22 essential-oil compounds revealed thymol, car-
vacrol, trans-anethole, methyl chavicol, and cuminalde-
hyde as the antifungally most active compounds
(MIC=1.25�10�3 mol l�1), while hydroquinone, o-cresol,
guaiacol, and coniferaldehyde were the least active
compounds against T. versicolor (MIC >0.02 mol l�1).
Similarly, thymol, carvacrol, trans-anethole, and cumi-
naldehyde exhibited the greatest inhibitory action
(MIC=6.25�10�4 and 3.13�10�4 mol l�1), while hydro-
quinone was the least active compound against C.
puteana (MIC > 0.02 mol l�1). The MICs are presented

Fig. 1 Tree structure representing the structuring of the oxygenated aromatic essential-oil compounds by the position and nature of their
substituents in the aromatic ring
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in Table 2 as log(1/MIC) values which were used as the
dependent variables in the PLS-QSAR analysis.

Fig. 1 shows the tree structure, which was constructed
by structuring the 22 essential-oil phenols, phenol ethers,
and aromatic aldehydes by the nature and position of the
substituents in the aromatic ring.

All calculated molecular descriptors are presented in
Table 2. EHOMO and ELUMO are the energies of the highest
occupied and lowest unoccupied molecular orbitals,
FNSA1 (fractional negative surface area 1) is the ratio
between the partial negative surface area and the total
surface area of the molecules (Eq. 1), Donor and Acceptor
represent the number of hydrogen bond donor and

acceptor atoms in the molecules, and MR is the molar
refractivity. N (relative hardness) and electronegativity
were calculated with Eqs. (2) and (3) [20].

FNSA1 ¼ S �Aið Þ=Atotal ðEq:1Þ
�Ai=area of the ith negative atomAtotal=total molecular
surface area

N¼ 1
2 ELUMO � EHOMOð Þ ðEq:2Þ

Electronegativity ¼� 1
2 EHOMO þ ELUMOð Þ ðEq:3Þ

The construction of the best PLS models describing the
antifungal activity of the essential-oil compounds towards

Table 2 Experimentally deter-
mined antifungal activity values
and calculated molecular de-
scriptors for the 22 oxygenated
aromatic essential oil com-
pounds

Compound log(1/MIC)
(T.v.)

log(1/MIC)
(C.p.)

C log P EHOMO
(eV)

ELUMO
(eV)

Phenol 1.699 2.000 1.48 �9.114074 0.398342
o-Cresol 1.000 2.301 1.92 �8.998954 0.368562
m-Cresol 2.000 2.000 1.97 �9.025227 0.393198
p-Cresol 2.301 2.903 1.97 �8.884176 0.426914
Thymol 2.903 3.505 3.20 �8.946260 0.369294
Carvacrol 2.903 3.204 3.35 �8.900223 0.368714
Creosol 2.000 2.301 1.82 �8.634310 0.420392
trans-Isoeugenola 2.301 2.903 2.45 �8.420338 0.005979
Eugenol 2.301 2.903 2.40 �8.662725 0.392749
Coniferaldehyde 1.000 2.000 1.23 �8.850618 �0.799590
Hydroquinone 1.000 1.000 0.81 �8.735112 0.231246
Vanillin 2.000 2.000 1.28 �9.127688 �0.475626
Ethyl vanillin 2.000 2.000 1.81 �9.094283 �0.452038
Guaiacol 1.000 2.000 1.32 �8.969929 0.264306
Methyl salycilate 2.301 2.602 2.34 �9.388046 �0.497670
trans-Anethole 2.903 3.505 3.31 �8.775615 0.196881
Methyl eugenol 2.602 2.602 2.87 �9.142030 0.190911
Methyl chavicol 2.903 2.903 3.13 �8.816012 0.492724
p-Methoxy phenylacetone 2.000 2.000 1.35 �9.030088 0.232234
Benzaldehyde 2.000 2.000 1.50 �10.002219 �0.433860
Anisaldehyde 2.000 2.000 1.78 �9.369038 �0.376464
Cuminaldehyde 2.903 3.204 2.92 �9.752234 �0.457878
cis-Isoeugenola 2.301 2.903 2.58 �8.520932 0.131259

Compound Electronegativity (eV) Donor Acceptor FNSA1 CMR

Phenol 4.357866 1 1 0.255 2.8417
o-Cresol 4.315196 1 1 0.386 3.3055
m-Cresol 4.316014 1 1 0.472 3.3055
p-Cresol 4.228631 1 1 0.438 3.3055
Thymol 4.288483 1 1 0.730 4.6969
Carvacrol 4.265754 1 1 0.610 4.6969
Creosol 4.106959 1 2 0.557 3.9224
trans-Isoeugenola 4.207180 1 2 0.518 4.9006
Eugenol 4.134988 1 2 0.275 4.8246
Coniferaldehyde 4.825104 1 3 0.411 5.1643
Hydroquinone 4.251933 2 2 0.289 2.9948
Vanillin 4.801657 1 3 0.413 3.9581
Ethyl vanillin 4.773160 1 3 0.340 4.4219
Guaiacol 4.352811 1 2 0.372 3.4586
Methyl salycilate 4.942858 1 3 0.398 3.9581
trans-Anethole 4.289367 0 1 0.513 4.7475
Methyl eugenol 4.475559 0 2 0.302 5.2884
Methyl chavicol 4.161644 0 1 0.256 4.6715
p-Methoxy phenylacetone 4.398927 0 2 0.329 4.7326
Benzaldehyde 5.218040 0 1 0.295 3.1881
Anisaldehyde 4.872751 0 2 0.379 3.8050
Cuminaldehyde 5.105056 0 1 0.543 4.5795
cis-Isoeugenola 4.194837 1 2 0.172 4.9006

a Isomeric mixture
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the white-rot T. versicolor and the brown-rot C. puteana
is shown in Table 3 (Eqs. 4–10), where n represents the
number of compounds included in the PLS analysis, q2

and r2, respectively, are the cross-validated and non-
cross-validated correlation coefficients, and s is the
standard error of estimate. The observed versus calculated
log(1/MIC) values for the best PLS models (Eqs. 7, 8, and
10) are shown in Fig. 2.

Discussion

Knobloch and co-workers [33] reported that among the
factors influencing the antifungal activity of essential oil
compounds are their hydrophobic properties, which both
determine their ability to penetrate the hitin cell walls of
fungal hyphae. The most antifungally active compounds
against T. versicolor and C. puteana (thymol, carvacrol,
trans-anethole, methyl chavicol, and cuminaldehyde) are
also the most hydrophobic compounds in the data set with
calculated C log P values ranging from 3.35 for carvacrol
and 2.92 for cuminaldehyde, while the least active
compounds (o-cresol, hydroquinone, guaiacol, and
coniferaldehyde) are also the least hydrophobic in the
data set with calculated log P values ranging from 0.81
for hydroquinone to 1.92 for o-cresol, proving the
hydrophobicity of compounds to be an important factor
for their antifungal activity.

After identifying the structural elements in the gener-
ated tree structure (Fig. 1), which were common to the
antifungally most active and least active compounds for
both types of wood-decaying fungi, the following four
hypotheses were derived:

1. Compounds with two or three oxygen-containing
groups exhibit a weaker antifungal activity against
both of the fungi tested than compounds with only one
oxygen-containing group in the aromatic ring.

2. Substituents in the second position of the aromatic ring
(e.g. the R2 –Me and –MeO groups in the cases of o-
cresol and guaiacol) decrease the antifungal activity of

Table 3 Resulting PLS models
for the white-rot Trametes ver-
sicolor and the brown-rot Co-
niophora puteana (Eqs. 4–10)

log 1=MICð Þ ¼ aC log Pþ bEHOMO þ cDonorþ d

a b c d na q2 r2 s

Trametes versicolor

0.730 – – 0.559 22 0.701 0.745 0.327 (Eq. 4)
0.741 �0.283 – �2.019 22 0.727 0.769 0.325 (Eq. 5)
0.664 – �0.231 0.864 22 0.730 0.778 0.319 (Eq. 6)
0.572 – �0.178 1.130 19 0.883 0.929 0.143 (Eq. 7)
0.633 �0.196 – 0.899 19 0.876 0.914 0.157 (Eq. 8)

log 1=MICð Þ ¼ aC log Pþ bFNSA1þ c

a b c na q2 r2 s

Coniophora puteana

0.749 – 0.873 22 0.794 0.834 0.261 (Eq. 9)
0.677 0.900 1.553 22 0.813 0.859 0.247 (Eq. 10)

a n is the number of compounds included in the PLS analysis

Fig. 2 Relationships between the observed and calculated log(1/
MIC) values for the best PLS models: a the log P–Donor model
(Eq. 7), b the log P–E HOMO model (Eq. 8), (c) the log P–FNSA1
model (Eq. 10)
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a compound. In the case of thymol, the i-Pr group in
the second position is an exception, rendering it one of
the most active inhibitory compounds. This is probably
the result of stereochemical enhancement encountered
during the binding of thymol into the fungal enzyme’s
active site.

3. Oxygen-containing groups in the fourth position of the
aromatic ring (e.g. the R4 –OH group and the –CHO
group at the end of a three-carbon chain in the cases of
hydroquinone and coniferaldehyde) decrease the anti-
fungal activity of a compound in comparison with
compounds that carry an alkyl or alkenyl group in the
same position, e.g. trans-anethole, methyl chavicol,
and cuminaldehyde.

4. Compounds with oxygen-containing groups in the
second and fourth positions of the aromatic ring
(vanillin, ethyl vanillin, and coniferaldehyde) are less
active than compounds with oxygen-containing groups
in the second position and hydrocarbon groups in the
fourth position of the aromatic ring (creosol, eugenol,
isoeugenol (isomeric mixture), and methyl eugenol).
The size of the hydrocarbon group also influences the
antifungal activity, where it is evident that compounds
with larger groups (cis-, trans-1-propenyl and 2-
propenyl) are antifungally more active than com-
pounds with smaller hydrocarbon groups (–Me).

Before proceeding to the actual PLS-QSAR analysis,
relationships between the independent and dependent
variables were explored by generating scatter plots, which
revealed C log P as a strong molecular descriptor for the
modeling of the experimentally determined MICs for T.
versicolor and C. puteana. The initial C log P–PLS
(Eqs. 4 and 9) model was improved by adding the
descriptors in Table 2 to the PLS analysis. The best
models for T. versicolor were obtained with C log P,
EHOMO, and the number of donor atoms in the molecular
structures of the compounds selected (Eqs. 5 and 6), while
other descriptors did not yield significant correlations in
combination with C log P. The outliers of Eq. (6) were o-
cresol, guaiacol, and coniferaldehyde. High residual
values between the observed and calculated antifungal
activity for these compounds might be the result of the
assumption that was made prior to the start of the QSAR
analysis—their MICs were experimentally determined to
be greater than 0.02 mol l�1 and were thus assumed to be
0.1 mol l�1 to enable their inclusion in the analysis. They
were thus omitted from the PLS analysis, generating the
final regression Eqs. (7) and (8). Equation (7) (the
C log P–Donor model) suggests that the higher the
calculated C log P value of a compound and the fewer
donor atoms its molecule contains, the greater its
antifungal activity. The relative contribution of the
C log P component in the final regression equation was
78.7% and 21.3% for the Donor component.

Donor atoms are the oxygen atoms belonging to
hydroxyl groups and may be oxidized to oxygen radicals
in enzymatic oxidation reactions such as those catalyzed
by the T. versicolor laccase. Hydroquinone is the least

hydrophobic molecule in the data set and the only
compound with two donor atoms in its molecule. Both
facts explain hydroquinone’s lack of antifungal activity
within the concentration range tested. Trans-anethole on
the other hand, contains a methoxy instead of a hydroxyl
group in the first position of the aromatic ring as the only
oxygen-containing group in the molecule and thus carries
no donor atoms. It is also the second most hydrophobic
molecule in the data set according to the calculated
C log P values, which explains its high antifungal activity
against T. versicolor.

Sakurada and co-workers [24] discovered that the
oxidation rate of monosubstituted phenols with horse-
radish peroxidase correlate well with the quantum chem-
ical descriptor E HOMO. Since the T. versicolor laccase
oxidizes phenolic compounds to their corresponding
phenoxy radicals, a model describing the 19 compounds
which yielded the best correlation with C log P and the
number of donor atoms in the molecules of the tested
essential oil components, was also constructed with
C log P and EHOMO (Eq. 8). The C log P–EHOMO model
described the structure–antifungal activity relationship of
the compounds in the reduced data set almost as well as
the C log P–Donor model, suggesting that the compounds
with lower EHOMO values are less prone to enzymatic
oxidation and thus exhibit a greater antifungal activity.

The bioactivity of a chemical compound depends on
two factors, (1) the transport of the molecule from the
outer aqueous medium to a specific target molecule in the
biophase of the test organism and (2) the reactivity of the
chemical towards the target molecule [34]. The fact that
C log P explains about 80% of the variance in the data set
(Eqs. 7 and 8) suggests that the key step in the antifungal
activity of the compounds tested towards T. versicolor is
in reaching the inside of the fungal cells, where they can
act upon the fungal enzymes. Hydrophobicity is consid-
ered to be largely due to the free energy change associated
with the desolvation of a compound as it moves from an
aqueous phase to the biological phase with which it
interacts to produce biological activity. Log P is thus a
key factor in transport through a membrane, but it can
also control hydrophobic binding to a receptor. If the
coefficient is between 0.9 and 1.0, log P represents a
purely transport term. On the other hand, if the coefficient
is about 0.5, log P represents a binding term. All the
coefficients in the equations in Table 3 are between 0.57
and 0.75 which suggests that log P in our case might be
modeling both transport and binding. Since Donor and
EHOMO represent the remaining 20% of the variance, it
can be concluded that enzymatic oxidation reactions play
an important role in the mechanism of the antifungal
activity of the tested compounds, possibly as competing
reactions to the binding of the inhibitors to the –SH
groups of cystein residues in the fungal enzymes’ active
sites, that potentially inactivate phenolic inhibitors such
as in the case of the T. versicolor laccase. Peroxidases
such as lignin peroxidase and manganese peroxidase,
which are also produced by T. versicolor and have been
proven to oxidize phenolic compounds to their corre-
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sponding phenoxy radicals as well, [35,36] could also be
the potential targets of phenolic inhibition but limited
knowledge of the structures of their substrate-binding
active sites prevents further speculation in this direction.

The C log P–log(1/MIC) scatter plot for C. puteana
showed three to four linear relationships between the
essential-oil compounds in the data set, suggesting
possible multiple mechanisms of activities of the com-
pounds, [37, 38] but due to the small number of
compounds in the data set, this hypothesis could not be
statistically proven. The correlation obtained by using
C log P as the only descriptor in the regression equation
was thus improved by gradually including other descrip-
tors from Table 2 in the PLS analysis. Besides C log P,
FNSA1 also proved to be an informative descriptor in
correlating the experimentally determined MICs for C.
puteana with the structural features of the data set. The
C log P–FNSA1 model (Eq. 10) suggests that the higher
the calculated C log P value of a molecule and the higher
the ratio between the partial negative surface area and the
total surface area of the molecule, the greater the
antifungal activity of a compound. The relative contribu-
tion of the C log P component in the final regression
equation explains 76.7% of the variance in the data set,
while the FNSA1 component explains only 23.3% of the
variance, suggesting that the key step in the antifungal
activity of the tested compounds, as in the case of T.
versicolor, is in reaching the inside of the fungal cells,
where they can exhibit their inhibitory action upon the
fungal enzymes.

Charged partial surface area (CPSA) descriptors such
as FNSA1 are used to quantify polar interactions between
molecules and represent various combinations of solvent-
accessible surface area information and partial atomic
charge information, which takes into account both s and p
charges [39]. The FNSA1 value depends on the size of the
molecules and the chemical nature of the substituents in
the aromatic ring. Ester and aldehyde groups direct p-
electrons to meta-positions in the aromatic ring, while
alkyl, alkenyl, hydroxyl, and alkoxy groups direct p-
electrons to ortho- and para-positions. Electron transla-
tions within the aromatic ring and the total electron
distribution of the molecule both affect the sum of
surfaces of negatively charged atoms (Eq. 1). The most
antifungally active compounds for C. puteana (thymol,
carvacrol, trans-anethole, and cuminaldehyde) all contain
only one oxygen atom in their molecules and have the
highest FNSA1 values (the FNSA1 value for creosol is
higher than that of trans-anethole, but its greater

hydrophilic character renders it less active towards C.
puteana). The greater the ratio between the negatively
charged partial surface area and the whole surface area of
the molecules, the more easily the selected compounds
might interact with –SH groups in the enzyme active sites
and thus exhibit their inhibitory action. Since quantum
chemical descriptors such as EHOMO and ELUMO did not
improve the initial C log P regression equation, potential
enzymatic oxidations and reductions as competing reac-
tions to the inhibitory action of the selected essential-oil
compounds may be excluded. The good correlation
obtained with the FNSA1 geometrical descriptor also
leads to questions about the structural features of the
target fungal enzymes’ active sites, which have not yet
been identified for phenolic inhibitors in the case of C.
puteana as well. Since high values of the ratio between
the negatively charged partial surface area and the whole
surface area of the molecules are favored for their
antifungal activity, this might imply that the target fungal
enzymes’ active sites contain amino acid residues with
polar side chains (lysine, arginine, and hystidine),
enabling enhanced polar interactions and thus stronger
enzyme–inhibitor complexes.

According to the calculated values of the statistical
parameters used for the evaluation of the regression
equations obtained (Table 4), the best PLS models
generated in the PLS-QSAR analysis are all statistically
significant. The three best PLS models (Eqs. 7, 8 and 10)
yielded good correlations between the experimentally
determined log(1/MIC) values for both wood-degrading
fungi and the molecular descriptors of compounds
included in the regression analyses (r2>0.85, s<0.24).
The “leave-one-out” cross-validation method resulted in
high q2 values (q2>0.81), representing good predictive
ability of the models as well. Both PRESS and PRESS/
SSy are additional criteria used to evaluate the predictive
ability of a QSAR model. Models having PRESS/SSy
ratios lower than 0.4 are considered to be statistically
significant and predict better than chance, while models
having PRESS/SSy ratios less than 0.1 are excellent [40].
The ratio between the standard error of estimate of the
QSAR model and the range of the experimentally
determined biological activity (s/DAct.) is another crite-
rion for the evaluation of QSAR models and, if
determined to be less than 10%, represents statistically
good QSAR models [41].

Table 4 Statistical parameters for the evaluation of the three best PLS models

PLS model n q2 sCV r2 s No. of PCs PRESS PRESS/SSy s/DAct. (%)

a C log P–Donor 19 0.883 0.185 0.929 0.143 2 1.023 0.117 7.5
a C log P–E HOMO 19 0.876 0.194 0.914 0.157 2 1.085 0.124 8.3
b C log P–FNSA1 22 0.813 0,284 0.859 0.247 2 1.538 0.187 9.8

a PLS model for the white-rot T. versicolor
b PLS model for the brown-rot C. puteana
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Conclusions

The results of the PLS-QSAR analysis for the modeling of
the antifungal activity of the essential-oil compounds
tested against both wood-degrading fungi coincide well
with the first and roughly with the third and fourth
hypotheses derived from data structuring, suggesting that
data structuring is a good starting point in SAR studies
and the hypotheses derived therefrom may be further
studied in-depth by QSAR methods. Conformation of the
second and the structural aspects of the third and fourth
hypotheses in this stage of the analysis is not yet possible,
because size and shape descriptors for substituents in the
second and fourth positions of the aromatic ring were not
included in the PLS-QSAR analysis. The PLS models
obtained provide good correlations for the modeling of
the antifungal activity against both wood-degrading fungi.
Although it is not known which fungal enzymes are the
primary targets of the inhibitory action of the selected
compounds, the PLS models obtained provide some
insight into the molecular basis of their antifungal
activity. To gain a more in-depth understanding of the
relationship between the molecular structure and antifun-
gal activity of the selected oxygenated aromatic essential
oil compounds, other QSAR methods such as comparative
molecular field analysis (CoMFA) and hologram QSAR
(HQSAR) will be applied as they enable the introduction
of steric, electronic and topological molecular features
into the regression equations.
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